Vývojová doska pre mikrokontroléry AVR 8-bit RISC

Príručka používateľa

Embedded Electronics

& Solutions, s.r.o <u>www.eeas.cz</u>

Základné vlastnosti:

- Atmega2560
- LCD Displej 2x16
- 8 x LED
- 8 x Tlačidlo
- Klávesnica 4x4
- 7-Segm 6-miest LED Displej
- Maticový displej
- Externá SRAM 32kB
- Externá EEPROM 2kB
- Bzučiak
- Hodiny reálneho času so zálohovacou batériou (CR1220)
- Teplotný senzor
- 2x USB + 1x RS232 komunikačné porty
- ISP a JTAG
- 2 opto oddelené výstupy

Obsah:

1. Hardvérová časť

- 1.1. Popis a rozmiestnenie periférií vývojovej dosky
- 1.2. Napájanie dosky, napájacie konektory
- 1.3. Zdroj hodinového signálu
- 1.4. IO porty a ich konektory
- 1.5. Popis periférií
- 1.6. Programovanie procesora JTAG/ISP, konektory
- 1.7. RTC batéria a jej výmena

2. Softvérová časť

- 2.0. Demo aplikácia
- 2.1. Vývojové prostredie Atmel Studio 6.0
- 2.2. Nahranie softvéru do mikroprocesora

1. Hardvérová časť

1.1 Popis a rozmiestnenie periférií vývojovej dosky

1.2 Napájanie dosky, napájacie konektory

Napájať AVR Development board je možné niekoľkými spôsobmi. Ako najbezpečnejší spôsob napájania odporúčame použiť napájanie pomocou konektora **JACK 2,1mm** a priloženého sieťového adaptéra.

Privedené napájacie napätie je znovu usmernené a tak nezáleží na polarite vývodov JACKu. Je možné použiť napájacie napätie v rozmedzí od **6V-9V**. Pre vyššie napájacie napätia je **nutné** použiť **chladič** stabilizátora

Druhou možnosťou napájania dosky je priviesť **jednosmerné, stabilizované napätie 5V** na konektory vyznačené na obrázkoch dole.

Pozor, tento spôsob nie je chránený voči **opačnej polarite**, preto dbajte na **správne** pripájanie napätia tiež a skontrolujte či napájacie napätie **neprekračuje** viac ako **5V**.

Tieto konektory slúžia aj ako vývod napájania dosky a preto na ne môžeme pripojiť ďalšie zariadenia ako napríklad čítač frekvencie, logickú sondu alebo ďalšiu perifériu.

Pozn. AVR Development board je možné napájať **len** napätím **5V** a **všetky** súčiastky sú dimenzované na napájanie prostredníctvom tohto napätia.

1.3. Zdroj hodinového signálu

Jediným zdrojom hodinového signálu procesora je kryštál **16 MHz**.

Pozn.: Procesor ATmega2560 pracuje len do 16MHz

1.4. IO porty a ich konektory

Na AVR Developmnent boarde sú vyvedené niektoré IO porty procesora ATmega2560 na kolíkové lišty, ich umiestnenie je zobrazené na obrázku.

K Dispozícii sú porty **PortC, PortA, PortJ, PortD, PortL, PortB**. Na konci každej kolíkovej lišty pri **PortX.0** je umiestnené **GND**.

Pri zapájaní obvodov a periférií na tieto kolíkové lišty je nutné dbať na nebezpečenstvo prítomnosti **statickej elektriny (ESD)** pretože v opačnom prípade môže dôjsť k **poškodeniu** daného **IO pinu**.

1.5. Popis periférii

AVR Development board poskytuje užívateľovi veľké množstvo periférii na ktorých je možné vyvíjať rôznorodé aplikácie. Niektoré periférie sú priamo pripojené k IO portom procesora, iné sa pripájajú pomocou kolíkových líšt. Pre väčšinu periférii sú dodávané softvérové príklady v DEMO aplikácii.

1.5.1 LED diódy

Doska obsahuje **8 programovo** ovládateľných LED diód. Každá dióda je vybavená **rezistorom** a sú k procesoru zapojené nasledovne.

LED7	-	PortF.7
LED6	-	PortF.6
LED5	-	PortF.5
LED4	-	PortF.4
LED3	_	PortF.3
LED2	_	PortF.2
LED1	-	PortF.1
LED0	-	PortF.0

Pozn. Pri **využití JTAG** je možné použiť **len** diódy **LED0-LED3**, nakoľko LED4-LED7 sú pripojené na JTAG porte

1.5.2 Tlačidlá

Pre pohodlný vstup a ovládanie jednoduchých aplikácii je možné využiť 8 tlačidiel. Tlačidlá sú k procesoru pripojené nasledovne.

1.5.3 Trimer pre testovanie AD prevodníka

Pre testovanie **Analógového prevodníka** je možné pripojiť **trimer**, ktorý generuje na vstupe kanálu **ADC8** napätie v rozsahu **0-5V**. Tento vstup do procesora sa **povoľuje** prepnutím **prepojky EnAD** do **polohy** ako je ukázané na **obrázku**. Potom je možné snímať analógovú hodnotu na pine **PortK.0**

Pozn. Pri využití potenciometra nie je možné použiť SWO

1.5.4 Bzučiak

Bzučiak je pripojený na pin **PortC.7.** Do činnosti sa uvádza **logickou úrovňou 1**.

1.5.5 LCD Displej

Pre základný výstup pre užívateľa je použiteľný **LCD Displej 16x2 znakov**. Displej je na procesor pripojený nasledovne

DD.7 - PortH.7 DD.6 - PortH.6 DD.5 - PortH.5 DD.4 - PorhH.4 EN - PortH.3 RS - PortH.2

Pre nastavenie **kontrastu** displeja je určený trimer **R61**.

Pozn. Podsvietenie LCD je trvale v zapnutom stave.

1.5.6 Klávesnica

Doska ponúka pre užívateľa **klávesnicu** so **16timi** tlačidlami. Klávesnica je zapojená **do matice 4 x4**. Zapojenie klávesnice na procesor je zrejmé z priloženej **schémy** a popisu.

ROW/COLLUM0 – PortE.0
ROW/COLLUM1 - PortE.1
ROW/COLLUM2 - PortE.2
ROW/COLLUM3 - PortE.3
ROW/COLLUM4 - PortE.7
ROW/COLLUM5 - PortE.6
ROW/COLLUM6 - PortE.5
ROW/COLLUM7 - PortE.4

1.5.7 Sedem segmentový displej

Pre užívateľa je pripravených aj niekoľko **LED** displejov. Prvý je **sedem segmentový** LED Displej so **šiestimi** znakmi. LED Displej je zapojený **multiplexovo**, to znamená že každý **znak** má **svoj vývod** a **segmenty** majú **len 8 vývodov**. Presné zapojenie je zrejmé zo **schémy**.

Pozn. Tento displej sa pripája pomocou kolíkových líšt na vyvedené voľné IO Porty

1.5.8 Maticový displej

Pre prácu s **maticovo** zapojenými displejmi je na doske dostupný aj **maticový** LED **Displej 8x8 červeno/zelený**. Zapojenie je zrejmé zo schémy a popisu.

Pozn. Tento displej sa pripája pomocou kolíkových líšt na voľné vyvedené IO Porty

1.5.9 Externá SRAM pamäť 32kB

Pamäť je zapojená **klasickým** spôsobom cez **adresný LATCH**. **SRAM** je **priamo** pripojená na procesor kde je k dispozícií pomocný **externý RAM interface**, ktorý mapuje túto **SRAM** do adresného priestoru procesora. Zapojenie RAM je uvedené **v schéme**.

1.5.10 Externá EEPROM pamäť 2kB

Kit ponúka ďalšiu **externú** pamäť, ktorou je **sériová EEPROM** typu **xx24C02**. EEPROM je pripojená na **TWI (I2C)** interface na ATmega2560.

SDA – PortD.1 SCL – PortD.0

1.5.11 Hodiny reálneho času

RTC obvod typu **DS1307** je pripojený taktiež na **TWI (I2C)** interface. Viac o registrovom vybavený RTC a použitie **nájdete** v priložených softvéroch alebo v **datasheete** od DS1307. RTC je **zálohovaný** batériou typu **CR1225/CR1220.**

SDA – PortD.1 SCL – PortD.0

1.5.12 Teplotné čidlo

Ako **teplotné** čidlo je vybrané **digitálne** čidlo od spoločnosti **MAXIM/DALLAS DS18S20**. Komunikuje po tzv. **1-Wire**. Táto linka je pripojená na pine **PortD.7**

Pozn: Nepoužívajte **mraziace spreje** pri testovaní čidla, môžete **poškodiť** okolité súčiastky.

1.5.13 Prijímač IR diaľkového ovládania

Doska obsahuje **prijímač infra červeného diaľkového ovládania s demodulátorom 36kHz** (*konkr. SFH5110-36*), ktorý je pripojený na pin **PortB.0**

1.5.14 Opticky oddelené výstupy

1.5.15 Užívateľský RS232 a USB kanál

Pre komunikáciu s PC alebo ďalšími perifériami sú k dispozícii dva sériové kanály pričom jeden je zakončený **RS232 CANON9 konektorom** a druhý **USB konektorom** s využitím prevodníka **FTDI**. Súčasne je možné využiť len jeden typ pripojenia, nakoľko tieto výstupy zdieľajú jedno UART rozhranie **UART2**. Konkrétne zapojenie je uvedené v schéme zapojenia dosky.

1.6 Programovanie procesora JTAG/ISP, konektory

Programovanie procesora **a emulovanie** programu je možné aj cez programovacie rozhrania.

1. GND 2. VCC 3. RESET 4. MOSI 5. SCK 6. MISO

1. ISP – In-System-Programming

Pozn: Nastavenie a **dostupnosť JTAG/ISP** je možné meniť pomocou **"Fuse bites"** Dbajte na **pozorné nastavovanie** týchto možností !

Opto

00

1.7 RTC batéria a jej výmena

Pri bežnom používaní nie je potrebné RTC batériu vôbec vymieňať. Ale ak nastane situácia že batéria je vybitá postupujeme nasledovne. **Vypneme** celú dosk, **opatrne** vyberieme batériu a založíme novú **batériu CR1220 alebo CR1225.**

2. Softvérová časť

2.0 Demo aplikácia

Vývojová doska je dodávaná s demo aplikáciou, ktorá demonštruje všetky použité periférie na doske. Súčasťou dodávky sú aj zdrojové kódy demo aplikácie napísané v jazyku ANSI C a projektové súbory vývojového prostredia Atmel Studio 6.0.

Po spustení softvéru prebehne test EEPROM a SRAM pamäte a následne sa vykoná jeden odmer teploty z teplotného senzoru. V prípade, že konektor **MATRIX_RED** je pripojený na port **PA** a konektor **MATRIX_GREEN** na konektor **PJ**, na maticovom displeji sú zobrazované znaky zatlačené na klávesnici, prípade znaky prijaté z UART2 periférie rýchlosťou 9600 baudov. Klávesou # je možné meniť farbu zobrazovania maticového displeja medzi červenou, zelenou a oranžovou. Klávesa * umožňuje prepínať módy LED displeja medzi maticovým a sedem segmentovým displejom. V prípade, že je nastavený mód sedem segmentového displeja, je potrebné pripojiť **LED_ANODES** konektor na port **PA** a **LED_CATHODES** konektor na port **PJ**. Počas zobrazenia módu sedem segmentového displeja je na displeji striedavo zobrazovaný čas a dátum vyčítaný z obvodu reálneho času. Trimrom pripojeným na AD kanál procesora je možné ovládať počet rozsvietených LED diód. V prípade, že je rozsvietených všetkých osem diód, zopne sa aj piezo bzučiak. Aktuálna hodnota AD prevodníka je taktiež odosielaná na perifériu UART2 rýchlosťou 9600 baudov.

2.1 Vývojové prostredie Atmel Studio 6.0

Nasledujúca stať popisuje založenie nového projektu vo vývojovom prostredí Atmel Studio 6.0 a vytvorenie ukážkového zdrojového kódu, ktorý bliká LED diódou **LEDO** pripojenou na pin **PFO**. Inštalačný softvér vývojového prostredia nájdete na priloženom CD. Pre založenie nového projektu postupujte nasledovne

- 1. Spustite vývojové prostredie **Atmel Studio 6.0**.
- 2. Na záložke Start Page kliknite na odkaz New Project...

🚸 Start Page - AtmelStudio (Administrator)	
<u>File Edit View VAssistX Project Debug Tools W</u>	indow <u>H</u> elp
🛐 • 曲 画 • 🐸 🚽 🛃 🔺 🍇 🖄 🖄 🖉 • 🖓	- 🖳 🔝 🔍 🗌
і 🔁 📴 🎇 🎝 🖻 Сі о _{й быс} 🖆 🖕 🛄 🗇 п	▶ & 50 5≣ (⊒ 6
Start Page ×	
The second s	
	Cat Startad
New Project	Get Started
New Example Project from ASF	Welcome
	These serves
C Open Project	
	A Distance in second

3. V dialógovom okne vyberte možnosť GCC C Executable Project, v dolnej časti okna vyplňte názov projektu Name a umiestnenie na disku Location. Označte možnosť Create directory for solution, čo vytvorí priečinok pre daný projekt. Kliknite na tlačidlo OK.

Recent Templates		Sort by: Default	• 11		Search Installed Templates	1
Installed Templates	•	GCC C Executabl	e Project C/C	C++	Type: C/C++ Creates an AVR 8-bit or AVR/ARI	M 32-bit
AtmelBoards UserBoards		GCC C Static Lib	ary Project C/C	C++	C project	
Assembler Atmel Studio Sol	ution	GCC C++ Execut	able Project C/C	C++		
					alaclude (anr/lo.h) (nt asin(vold) (printf("hello"	2
<u>N</u> ame:	AVR_Dev_Board					
Location:	C:\			-	Browse	
	AVR Dev Board			T	Create directory for colution	

4. Zo zoznamu vyberte procesor **ATmega2560** a kliknite na tlačidlo **OK**.

Device Family:	All				Search for device	2
Name	App./Boot Memory (Kbytes)	Data Memory (bytes)	EEPROM (byte	Device Info:		
ATmega168PA	16	1024	512	Device Nam	e ATmega2560	
ATmega169A	16	1024	512	Speed:	0	
ATmega169P	16	1024	512	Speed.	10/55	
ATmega169PA	16	1024	512	VCC:	1,8/0,0	
ATmega16A	16	1024	512	Family:	megaAVR	
ATmega16HVB	16	1024	512	Datash	eets	
ATmega16M1	16	1024	512			
ATmega16U2	16	512	512	Supported T	ools	
ATmega16U4	16	1280	512	AVR Dra	igon	
ATmega2560	256	65024	4096	AVRISP	mkil	
ATmega2561	256	65024	4096	=		
ATmega32	32	2048	1024	T AVR ON	EI	
ATmega324A	32	2048	1024	JTAGICI	E3	
ATmega324P	32	2048	1024	JTAGICI	Emkli	
ATmega324PA	32	2048	1024			
ATmega325	32	2048	1024	AVR Sin	nulator	
ATmega3250	32	2048	1024	STK600		
ATmega3250A	32	2048	1024	*		
20000	20	2040	1001			

5. V tomto bode je už projekt vytvorený, ale ešte je potrebné nastaviť kompilátoru taktovaciu frekvenciu procesora, čo je v našom prípade 16 MHz (externý kryštál). V ponuke Project kliknite na **AVR_Dev_Board Properties...** (AVR_Dev_Board označuje názov projektu, preto sa označenie tejto voľby môže líšiť v závislosti od zvoleného názvu projektu).

 Na záložke Toolchain v skupine AVR/GNU C Compiler vyberte položku Symbols. V sekcii Defined symbols (-D) kliknite vpravo na tlačidlo Add Item. Objaví sa dialógové okno, do ktorého zadajte hodnotu F_CPU=16000000 a kliknite na tlačidlo OK.

Build Build Events	Configuration: Active (Debug)	Platform: Active (AVR)	-	
Toolchain	Configuration Manager			
Device nol Advanced	AVR/GNU Common General OutputFiles MU/CNU Committee	AVR/GNU C Compiler Symbol Defined symbols (-D)	ols	
ASF	 Artwork Computer Preprocessor Symbols Directories Optimization Debugging Warnings Miscellaneous Average Optimization General Libraries Optimization Memory Settings Miscellaneous AVE/GNU Assembler 	E Undefined symbols (-U)	Add Defined symbols (-D) Defined symbols (-D) F_CPU=16000000 OK Cancel	

7. Prepnite sa na záložku **AVR_Dev_Board.c** so zdrojovým kódom a doplňte riadky kódu tak, aby Váš program vypadal ako na obrázku dole.

AVR_Dev_Board* AVR_Dev_Board.c* ×
♦ AVR_Dev_Board.c ♦ C:\AVR_Dev_Board\AVR_Dev_Board\AVR_Dev_Board
<pre> /* * AVR_Dev_Board.c * * Created: 17. 10. 2013 22:08:41 * Author: www.eeas.cz */ </pre>
<pre>#include <avr io.h=""> #include <util delay.h=""> // blikanie LED diodou DDRF = 0x01; // nastavit pin PF0 ako vystup while(1)</util></avr></pre>
<pre>{ PORTF ^= 0x01; // negovanie pinu PF0 _delay_ms(500); // cakanie 500 ms; } }</pre>

8. V menu **Build** kliknite na možnosť **Build Solution**, alebo zatlačte klávesu **F7**. Následne sa projekt skompiluje a vytvorí sa .hex súbor so skompilovaným programom.

2.2 Nahranie softvéru do mikroprocesora

Vývojová doska je dodávaná s bootloadrom navrhnutým špeciálne pre túto dosku. Výhodou tohto riešenia je, že nie je potrebné používať originálny programátor, ale postačí len USB pripojenie k PC. Pre nahratie vytvoreného .hex súboru postupujte nasledovne:

- 1. Pripojte dosku k PC pomocou USB konektora s označením **BOOTLOADER**.
- Spustite .jar súbor s bootloaderom, ktorý sa nachádza na priloženom CD v adresári Bootloader/PC Software a vyberte požadovanú 32 alebo 64 bitovú verziu podľa Vášho operačného systému.
- 3. Uveďte dosku do režimu bootloadera zatlačte a držte tlačidlo **SW7** následne zatlačte a pusťte tlačidlo **RESET**, pusťte tlačidlo **SW7**. Na displeji dosky sa rozsvieti nápis **USB FW LOADING waiting for SW**.

4. Nastavte komunikačný port (číslo COM portu je možné zistiť v Správcovi zariadení). V sekcii FLASH memory kliknite na tlačidlo Open .hex flash a vyberte .hex súbor, ktorý chcete nahrať do procesora (.hex z predchádzajúce príkladu sa nachádza v adresári "C:\AVR_Dev_Board\AVR_Dev_Board\Debug\AVR_Dev_Board.hex").

🛓 XMEGA BootLoader USB v3.0	
Connection Serial port: COM9 -	EE&S
FLASH memory Open .hex flash File:d\Debug\AVR_Dev_Board.h	Chip: not checked
Size: 333 bytes EEPROM memory	EEPROM: 0%
Open .hex eeprom	(Re)program chip
Size:	About

5. Kliknite na tlačidlo (Re)program chip. Bootloader nahrá Váš .hex súbor do procesora a následne spustí program v procesore. LED dióda LED0 by sa mala rozblikať s periódou cca 1 sekunda. Pri opakovanom nahrávaní toho istého súboru nie je potrebné znova otvárať tento súbor tlačidlom Open .hex flash, stačí len kliknúť na tlačidlo (Re)program chip.

Za spoločnosť Embedded Electronics & Solutions, s.r.o. Vám ďakujeme a želáme veľa úspešnej práce s prostriedkami našej firmy.

FF&S

Výrobca:

Embedded Electronics & Solutions, s.r.o. Primátorská 296/38 180 00 Praha 8 info@eeas.cz www.eeas.cz Tel.č. +420 731480348 / +420 737980953

Distribúcia v SR:

T-Industry, s.r.o. Hoštáky 910/49 907 01 Myjava <u>tind@tind.sk</u> www.tind.sk Tel.č. +421 907565722